Identification and Quantification of Polycyclic Aromatic Hydrocarbons in Polyhydroxyalkanoates Produced from Mixed Microbial Cultures and Municipal Organic Wastes at Pilot Scale

01 Pubblicazione su rivista
Cavaliere Chiara, Capriotti Anna Laura, Cerrato Andrea, Lorini Laura, Montone Carmela Maria, Valentino Francesco, Laganà Aldo, Majone Mauro
ISSN: 1420-3049

Polyhydroxyalkanoates (PHAs) are well-known biodegradable plastics produced by various bacterial strains, whose major drawback is constituted by the high cost of their synthesis. Producing PHAs from mixed microbial cultures and employing organic wastes as a carbon source allows us to both reduce cost and valorize available renewable resources, such as food waste and sewage sludge. However, different types of pollutants, originally contained in organic matrices, could persist into the final product, thus compromising their safety. In this work, the exploitation of municipal wastes for PHA production is evaluated from the environmental and health safety aspect by determining the presence of polycyclic aromatic hydrocarbons (PAHs) in both commercial and waste-based PHA samples. Quantification of PAHs by gas chromatography-mass spectrometry on 24 PHA samples obtained in different conditions showed very low contamination levels, in the range of ppb to a few ppm. Moreover, the contaminant content seems to be dependent on the type of PHA stabilization and extraction, but independent from the type of feedstock. Commercial PHA derived from crops, selected for comparison, showed PAH content comparable to that detected in PHAs derived from organic fraction of municipal solid waste. Although there is no specific regulation on PAH maximum levels in PHAs, detected concentrations were consistently lower than threshold limit values set by regulation and guidelines for similar materials and/or applications. This suggests that the use of organic waste as substrate for PHA production is safe for both the human health and the environment.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma