Novel Pyridine-Based Hydroxamates and 2'-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity

01 Pubblicazione su rivista
Zwergel Clemens, Di Bello Elisabetta, Fioravanti Rossella, Conte Mariarosaria, Nebbioso Angela, Mazzone Roberta, Brosch Gerald, Mercurio Ciro, Varasi Mario, Altucci Lucia, Valente Sergio, Mai Antonello
ISSN: 1860-7179

Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide 5b previously described by us as HDAC inhibitor, we prepared four aza-analogues of 5b (6-8, 9b) as regioisomers containing the pyridine nucleus. A preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide 9b as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9a, 9c-f, and 11a-f) and 2'-aminoanilides (10a-f and 12a-f), related to 9b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11d displayed subnanomolar potency (IC50: 0.5 nM) and selectivity up to 34000-fold over HDAC4 and from 100- to 1300-fold over all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12d being the most effective (IC50HDAC3 = 0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9e, 11c, and 11d blocked over 80% cells in G2/M phase, whereas the anilides did not alter the cell cycle progress. In the same cell line, the hydroxamate 11c and the anilide 10b induced about 30% apoptosis, and the anilide 12c displayed about 40% cytodifferentiation. Finally, the most potent compounds in leukemia cells 9b, 11c, 10b, 10e, and 12c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma