Towards a reversed Faber–Krahn inequality for the truncated Laplacian

01 Pubblicazione su rivista
Birindelli I., Galise G., Ishii H.
ISSN: 0213-2230

We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P1+ mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type domains having fixed volume, the symmetry of the domain maximizes the principal eigenvalue, contrary to what happens for the Laplacian.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma