Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps

01 Pubblicazione su rivista
De Lellis C., Marchese A., Spadaro E. N., Valtorta D.
ISSN: 0010-2571

In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma