Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps
01 Pubblicazione su rivista
De Lellis C., Marchese A., Spadaro E. N., Valtorta D.
DOI: 10.4171/CMH/449
ISSN: 0010-2571
In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.