Optimal Throughput Management in UAV-based Networks during Disasters
Small Cells (SCs) installed on board of Unmanned Aerial Vehicles (UAVs) are a promising solution to provide wireless coverage to users escaping from an area affected by a disaster event. In this paper, we target the problem of maximizing the throughput over a set of areas in a disaster-affected territory. More in depth, we take into account: i) the limited capacity of the UAV-SC battery, ii) the maximum throughput that can be managed by each UAV-SC (due to backhauling/processing constraints), iii) the number of UAV-SCs that can simultaneously cover the same area. We then formulate the Maximum Throughput with Unmanned Aerial Vehicles (MT-UAV) problem, which is able to schedule the UAV-SC missions over a set of Time Slots (TSs) to maximize the total area throughput. Results, obtained over a realistic scenario, reveal that the total throughput is clearly impacted by the UAV-SC backhauling/processing constraints, rather than by the number of UAV-SCs providing coverage over the same area. Moreover, we analyze the UAV-SC missions selected by MT-UAV, showing that a typical mission is performed over multiple consecutive TSs. Therefore, we claim that the UAV-SC battery capacity is fundamental to guarantee sufficiently long missions and consequently to ensure the throughput requirements over multiple TSs.