Statistical and computational tradeoff in genetic algorithm-based estimation
When a genetic algorithm (GA) is employed in a statistical problem, the result is affected by both variability due to sampling and the
stochastic elements of algorithm. Both of these components should be controlled in order to obtain reliable results. In the present work we analyze parametric estimation problems tackled by GAs, and pursue two objectives: the first one is related to a formal variability analysis of final estimates, showing that it can be easily decomposed in the two sources of variability. In the second one we introduce a framework of GA estimation with fixed computational resources, which is a form of statistical and the computational tradeoff question, crucial in recent problems. In this situation the result should be optimal from both the statistical and computational point of view, considering the two sources of variability and the constraints on resources. Simulation studies will be presented for illustrating the proposed method and the statistical and computational tradeoff question