Shape memory activated self-deployable solar sails: small-scale prototypes manufacturing and planarity analysis by 3D laser scanner

01 Pubblicazione su rivista
Boschetto A., Bottini L., Costanza G., Tata M. E.
ISSN: 2076-0825

Solar sails are propellantless systems where the propulsive force is given by the momentum exchange of reflecting photons. Thanks to the use of shape memory alloys for the self-actuation of the system, complexity of the structure itself has decreased and so has the weight of the whole structure. Four self-deploying systems based on the NiTi shape memory wires have been designed and manufactured in different configurations (wires disposal and folding number). The deployed solar sails surfaces have been acquired by a Nextengine 3D Laser Scanner based on the Multistripe Triangulation. 3D maps have been pre-processed through Geomagic Studio and then elaborated in theWolfram Mathematica environment. The planarity degree has been evaluated as level curves from the regression plane highlighting marked differences between the four configurations and locating the vertices as the most critical zones. These results are useful in the optimization of the best folding solution both in the weight/surface reduction and in the planarity degree of the solar sail.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma