machine learning

MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation.

Query-guided end-to-end person search

Person search has recently gained attention as the novel task of finding a person, provided as a cropped sample, from a gallery of non-cropped images, whereby several other people are also visible. We believe that i. person detection and re-identification should be pursued in a joint optimization framework and that ii. the person search should leverage the query image extensively (e.g. emphasizing unique query patterns). However, so far, no prior art realizes this. We introduce a novel query-guided end-to-end person search network (QEEPS) to address both aspects.

Forecasting People Trajectories and Head Poses by Jointly Reasoning on Tracklets and Vislets

In this work, we explore the correlation between people trajectories and their head orientations. We argue that people trajectory and head pose forecasting can be modelled as a joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories (aka tracklets) of pedestrians to predict their future paths. In addition, sociological cues, such as expected destination or pedestrian interaction, are often combined with tracklets.

How to measure energy consumption in machine learning algorithms

Machine learning algorithms are responsible for a significant amount of computations. These computations are increasing with the advancements in different machine learning fields. For example, fields such as deep learning require algorithms to run during weeks consuming vast amounts of energy. While there is a trend in optimizing machine learning algorithms for performance and energy consumption, still there is little knowledge on how to estimate an algorithm’s energy consumption.

LIT: a system and benchmark for light understanding

A modern lighting system should automatically calibrate itself (light commissioning), assess its own status (which lights are on/off and how dimmed), and allow for the creation or preservation of lighting patterns (adjustability), e.g. after the sunset. Such a system does not exist today, nor (real) data, labels, or metrics are available to compare with and foster progress. In this paper we set the baselines to such a computational system, called LIT, and its applications.

“Don’t turn off the lights”: modelling of human light interaction in indoor environments

Human activity recognition and forecasting can be used as a primary cue for scene understanding. Acquiring details from the scene has vast applications in different fields such as computer vision, robotics and more recently smart lighting. This work brings together advanced research in computer vision and the most modern technology in lighting. The goal of this work is to eliminate the need for any switches for lighting, which means that each person in the office perceives the entire office as all lit, while lights, which are not visible by the person, are switched off by the system.

Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis

Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only “real world” data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used.

Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course. A proof-of-principle study

Background: Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progression remain suboptimal. This limits the opportunity to tailor therapy on an individual patient's prognosis, in spite of the choice of several therapeutic options.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma