Passive vibration control of roller batteries in cableways

04 Pubblicazione in atti di convegno
Carboni Biagio, Arena Andrea, Lacarbonara Walter

A passive vibration control strategy to mitigate the accelerations of roller batteries in cableways caused by the vehicle transit is investigated. The vibration control strategy makes use of a group of Tuned Mass Dampers (TMDs) placed in different positions along the roller battery. When the frequencies of the TMDs are properly tuned to the modes to control, the energy provided by the dynamic forcing to the roller battery is transferred as kinetic energy to the TMDs. This work investigates the effectiveness of an array of linear TMDs in comparison with the performance of hysteretic TMDs that exploit the restoring forces provided by an assembly of wire ropes. First a dynamical characterization of the roller battery (modal analysis) is carried out. Then an optimization of the assembly of linear TMDs against skew-symmetric harmonic excitations is achieved by means of the Differential Evolution algorithm (DE). Subsequently, the performance of the linear TMDs assembly against the vehicle transit across the tower is assessed. Finally the performance of a network of hysteretic TMDs is studied together with practical feasibility considerations.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma