mesenchymal stem cells

Mesenchymal stem cells as promoters, enhancers, and playmakers of the translational regenerative medicine 2018

Mesenchymal stem cells (MSCs) are currently being tested in preclinical and clinical trials for their ability to foster wound healing and tissue regeneration [1]. They are well known to show a therapeutic potential largely depending on their ability to secrete proregenerative cytokines, making these cells an attractive option for improving the treatment of chronic wounds.

Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells

Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPCin human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPCat low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPCwith gangliosides and EGF receptor (EGF-R) during neuronal differentiation process.

In vitro conditioning determines the capacity of dental pulp stem cells to function as pericyte-like cells

Dental pulp has been revealed as an accessible and a rich source of mesenchymal stem cells (MSCs) and its biological potential is currently under intense investigation. MSCs from dental pulp stem cells (DPSCs) have been indicated as a heterogeneous population oriented not only in repairing dentine but also in maintaining vascular and nervous homeostasis of the teeth. We sought to verify the phenotype of cells isolated from dental pulp of young donors and to investigate in vitro their role as pericyte-like cells.

Cellular and molecular mechanisms mediated by recPrP C involved in the neuronal differentiation process of mesenchymal stem cells

Human Dental Pulp Stem Cells (hDPSCs) represent a type of adult mesenchymal stem cells that have the ability to differentiate in vitro in several lineages such as odontoblasts, osteoblasts, chondrocytes, adipocytes and neurons. In the current work, we used hDPSCs as the experimental model to study the role of recombinant prion protein 23–231 (recPrP C ) in the neuronal differentiation process, and in the signal pathway activation of ERK 1/2 and Akt.

Isolation, propagation, and prion protein expression during neuronal differentiation of human dental pulp stem cells

Bioethical issues related to the manipulation of embryonic stem cells have hindered advances in the field of medical research. For this reason, it is very important to obtain adult stem cells from different tissues such as adipose, umbilical cord, bone marrow and blood. Among the possible sources, dental pulp is particularly interesting because it is easy to obtain in respect of bioethical considerations.

The potential role of Quorum Sensing in clonal growth and subsequent expansion of bone marrow stromal cell strains in culture

Clonal development (clonogenicity) is an inherent property of a subset of postnatal bone marrow (BM) adherent stromal mesenchymal stem cells (MSCs) from which a multipotent progeny develops in culture. Our data suggest that clonogenicity and BM-MSC expansion are two distinct biological events.

Engineering human-scale artificial bone grafts for treating critical-size bone defects

The manufacturing of artificial bone grafts can potentially circumvent the issues associated with current bone grafting treatments for critical-size bone defects caused by pathological disorders, trauma, or massive tumor ablation. In this study, we report on a potentially patient-specific fabrication process in which replicas of bone defects, in particular zygomatic and mandibular bones and phalanxes of a hand finger, were manufactured by laser stereolithography an used as templates for the creation of PDMS molds.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma