2506

Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices

We report on the detection of an angiogenic molecule Vascular Endothelial Growth Factor (VEGF) in different biological matrices by means of a new integrated biosensing platform exploiting the properties of Bloch surface waves. The new platform takes advantage of a tandem configuration, in which both label-free and enhanced fluorescence detection are implemented. Specifically designed one dimensional photonic crystals were deposited directly on disposable and low cost plastic biochips.

A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel

We report on the use of an optical sensing platform based on Bloch surface waves sustained by one-dimensional photonic crystals as a novel optical tool to probe in real time the fluid flow at a boundarywall of a microfluidic channel under dynamic conditions. Understanding how fluid flow interacts withwall surfaces is crucial for a broad range of biological processes and engineering applications, such as sur-face wave biosensing. The proposed platform provides nanometric resolution with respect to the distancefrom the boundary wall sensor’s surface.

Al/Ti/Al phonon-mediated KIDs for UV–vis light detection over large areas

The development of wide-area cryogenic light detectors with baseline energy resolution lower than 20 eV RMS is essential for next generation bolometric experiments searching for rare interactions. Indeed the simultaneous readout of the light and heat signals will enable background suppression through particle identification. Because of their excellent intrinsic energy resolution, as well as their well-established reproducibility, kinetic inductance detectors (KIDs) are good candidates for the development of next generation light detectors.

On-chip real-time monitoring of multiple displacement amplification of DNA

The integration of systems for real-time monitoring of DNA amplification reactions is rather limited, because the heating system, the temperature control and the detection system are usually realized with separate modules. In this work, a lab-on-a-chip system for real-time monitoring of the multiple displacement amplification reaction (MDA) is presented. The amplification and detection unit consists of a system-on-glass (SoG) coupled to a microfluidic chip.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma