Antioxidant

Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils

Since ancient times, plants have been used to preserve food, or for their health properties. Essential oils are complex mixtures of volatile compounds that are obtained from botanical material, specifically from aromatic plants. Lamiaceae is one of the most important families in the production of essential oils, as it has both antioxidant and antimicrobial properties. The essential oils of Mentha (the Lamiaceae family) have been extensively studied for their biological actions. In this review, we report the antioxidant, antifungal, antibiofilm, and cytotoxic properties of Mentha spp.

Evidence-BasedComplementaryandAlternativeMedicine

Sinceancienttimes,medicinalplantshavetraditionallybeenusedforthetreatment of different diseases. Nowadays, plants are considered a valuable source of unique natural compounds used in the development of antidiabetic, anti-inflammatory, anticancerous,andantimicrobialdrugs.Bacteria,fungi,andvirusesareresponsible for a range of human diseases. Microbial invasion and its virulence can cause damage to the host cells. Effective antimicrobials have been developed over the years; however, a dramatic increase in resistance to antimicrobial drugs has been observed.

Rediscovering medicinal Amazonian aromatic plants: Piper carpunya (Piperaceae) essential oil as paradigmatic study

Piper carpunya Ruiz & Pav. (Piperaceae) is a perennial aromatic shrub of Amazonian area of Ecuador and Peru, belonging to the ethnomedicine of these countries. The traditional preparations of the crude drug (fresh leaves used topically as is, and dried leaves in infusions or decoctions) are known for anti-inflammatory, antiulcer, antidiarrheal, antiparasitic effects, and wound healing properties. In light of this traditional evidence, chemical composition (GC-MS) and biological activity, i.e., antioxidant, antifungal (yeast) capacities, and genotoxicity, of Amazonian P.

Thiotaurine:from chemical and biological properties to role in H2S signaling

In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the "taurine family" due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety.

Antioxidant Activity of Synthetic Polymers of Phenolic Compounds

In recent years, developing potent antioxidants has been a very active area of research. In this context, phenolic compounds have been evaluated for their antioxidant activity. However, the use of phenolic compounds has also been limited by poor antioxidant activity in several in vivo studies. Polymeric phenols have received much attention owing to their potent antioxidant properties and increased stability in aqueous systems. To be truly effective in biological applications, it is important that these polymers be synthesized using benign methods.

Antioxidant Activities of Alkyl Substituted Pyrazine Derivatives of Chalcones-In Vitro and In Silico Study

Chalcones are polyphenolic secondary metabolites of plants, many of which have antioxidant activity. Herein, a set of 26 synthetic chalcone derivatives with alkyl substituted pyrazine heterocycle A and four types of the monophenolic ring B, were evaluated for the potential radical scavenging and antioxidant cellular capacity influencing the growth of cells exposed to H₂O₂. Before that, compounds were screened for cytotoxicity on THP-1 and HepG2 cell lines. Most of them were not cytotoxic in an overnight MTS assay.

Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil.

Antioxidant and biological activities of hydroxytyrosol and homovanillic alcohol obtained from olive mill wastewaters of extra-virgin olive oil production

Some constituents of the Mediterranean diet, such as extra-virgin olive oil (EVOO) contain substances such as hydroxytyrosol (HT) and its metabolite homovanillic alcohol (HA). HT has aroused much interest due to its antioxidant activity as a radical scavenger, whereas only a few studies have been made on the HA molecule. Both chemical synthesis and extraction techniques have been developed to obtain these molecules, with each method having its advantages and drawbacks.

Alpha lipoic acid in obstetrics and gynecology

Alpha-Lipoic acid (ALA) is a natural antioxidant synthetized by plants and animals, identified as a catalytic agent for oxidative decarboxylation of pyruvate and α-ketoglutarate. In this review, we analyzed the action of ALA in gynecology and obstetrics focusing in particular on neuropathic pain and antioxidant and anti-inflammatory action. A comprehensive literature search was performed in PubMed and Cochrane Library for retrieving articles in English language on the antioxidant and anti-inflammatory effects of ALA in gynecological and obstetrical conditions.

Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: a double-blind placebo-controlled study

Since sperm require high energy levels to perform their specialised function, it is vital that essential nutrients are available for spermatozoa when they develop, capacitate and acquire motility. However, they are vulnerable to a lack of energy and excess amounts of reactive oxygen species, which can impair sperm function, lead to immotility, acrosomal reaction impairment, DNA fragmentation and cell death.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma