autophagy

Role of FGFR2b in the crosstalk between autophagy and differentiation: involvement of JNK signaling

The FGFR2b is a receptor tyrosine kinase expressed exclusively in epithelial cells. We previously demonstrated that FGFR2b induces autophagy and that this process is required for the triggering of FGFR2b-mediated keratinocytes early differentiation. However, the molecular mechanisms regulating this interplay remain to be elucidated.

Interplay between FGFR2b-induced autophagy and phagocytosis: role of PLCγ-mediated signalling

Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b-induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments.

The aberrant expression of the mesenchymal variant of FGFR2 in the epithelial context inhibits autophagy

Signaling of the epithelial splice variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, epithelial mesenchymal transition (EMT) and tumorigenic features. Here we analyzed in the human keratinocyte cell line, as well as in primary cultured cells, the possible impact of FGFR2c forced expression on the autophagic process.

VEGF inhibition alters neurotrophin signalling pathways and induces caspase-3 activation and autophagy in rabbit retina

This study sought to evaluate the prospective role exerted by vascular endothelial growth factor (VEGF) in the modulation of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) signalling pathways in the rabbit retina. To reach this aim, the anti-VEGF agents aflibercept and ranibizumab were used as a pharmacological approach to evaluate the putative consequences elicited by VEGF inhibition on neurotrophin signalling.

The pathogenesis of lysosomal storage disorders. Beyond the engorgement of lysosomes to abnormal development and neuroinflammation

There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases.

NOD2 and inflammation: current insights

The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis.

AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis

Regulatory T cells (T reg ) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of T reg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human T reg differentiation and maintenance.

Autophagy induction impairs Wnt/β-catenin signalling through β-catenin relocalisation in glioblastoma cells

Autophagy is an evolutionary conserved process mediating lysosomal degradation of cytoplasmic material. Its involvement in cancer progression is highly controversial, due to its dual role in both limiting tumoural transformation and in protecting established tumoral cells from unfavorable conditions. Little is known about the cross-talk between autophagy and intracellular signalling pathways, as well as about autophagy impact on signalling molecules turnover. An aberrantly activated Wnt/β-catenin signalling is responsible for tumour proliferation, invasion, and stemness maintenance.

New perspectives from South-Y-East, not all about death. A report of the 12thlnternational Meeting on Yeast Apoptosis in Bari, Italy, May 14th-18th, 2017

Over the last 14 years, the field of yeast regulated cell death (RCD) has been expanding to more and more biomedical research themes, including aging, human diseases, cell stress response, metabolism and systems biology. The 12th International Meeting on Yeast Apoptosis (IMYA12), which was held in Bari, Italy from May 14th to 18th, 2017, nicely reflected this trend. This year, more than 100 participants, among which senior and young scientists from Europe, USA, North Africa and Japan, had an intense and open exchange of achievements and ideas.

Guidelines and recommendations on yeast cell death nomenclature

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel- lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi- nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma