brain

Number cognition

From our very early school years we start to realize that numbers govern much of our life. The symbolic mathematical competence that characterises much human activity is grounded in phylogenetically older systems that allow approximate, but behaviourally adaptive, estimates of numerosity. During bio- logical evolution these rudimentary mathematical abilities might have been crucial for survival and adaptation. In this special issue, we offer an overview of some promising lines of ongoing research on number processing in the brain.

Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions

Our behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. However, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity?

Distinct modes of functional connectivity induced by movie-watching

A fundamental question in systems neuroscience is how endogenous neuronal activity self-organizes during particular brain states. Recent neuroimaging studies have demonstrated systematic relationships between resting-state and task-induced functional connectivity (FC). In particular, continuous task studies, such as movie watching, speak to alterations in coupling among cortical regions and enhanced fluctuations in FC compared to the resting-state.

Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria

Phenylketonuria (PKU) is one of the most common human inborn errors of metabolism, caused by phenylalanine hydroxylase deficiency, leading to high phenylalanine and low tyrosine levels in blood and brain causing profound cognitive disability, if untreated. Since 1960, population is screened for hyperphenylalaninemia shortly after birth and submitted to early treatment in order to prevent the major manifestations of the disease.

ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion

Recent studies have reported the emerging role of microRNAs (miRNAs) in human cancers. We systematically characterized miRNA expression and editing in the human brain, which displays the highest number of A-to-I RNA editing sites among human tissues, and in de novo glioblastoma brain cancer. We identified 299 miRNAs altered in their expression and 24 miRNAs differently edited in human brain compared to glioblastoma tissues. We focused on the editing site within the miR-589-3p seed.

Exploring the use of dimethyl fumarate as microglia modulator for neurodegenerative diseases treatment

The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS).

Learning the meaning of new stimuli increases the cross-correlated activity of prefrontal neurons

The prefrontal cortex (PF) has a key role in learning rules and generating associations between stimuli and responses also called conditional motor learning. Previous studies in PF have examined conditional motor learning at the single cell level but not the correlation of discharges between neurons at the ensemble level. In the present study, we recorded from two rhesus monkeys in the dorsolateral and the mediolateral parts of the prefrontal cortex to address the role of correlated firing of simultaneously recorded pairs during conditional motor learning.

Modulation of pain sensitivity by chronic consumption of highly palatable food followed by abstinence: emerging role of fatty acid amide hydrolase

There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification.

Brain overexpression of uncoupling protein-2 (UCP2) delays renal damage and stroke occurrence in stroke-prone spontaneously hypertensive rats

The downregulation of uncoupling protein-2 (UCP2) is associated with increased brain and kidney injury in stroke-prone spontaneously hypertensive rats (SHRSP) fed with a Japanese style hypersodic diet (JD). Systemic overexpression of UCP2 reduces organ damage in JD-fed SHRSP. We examined the effect of brain-specific UCP2 overexpression on blood pressure (BP), stroke occurrence and kidney damage in JD-fed SHRSP. Rats received a single i.c.v. injection of a lentiviral vector encoding UCP2 (LV-UCP2), or an empty vector.

Role of glia in the regulation of sleep in health and disease

Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma