Relation of redox and structural alterations of rat skin in the function of chronological aging
Accumulation of oxidative insults on molecular and supramolecular levels could compromise renewal potency and architecture in the aging skin.
Accumulation of oxidative insults on molecular and supramolecular levels could compromise renewal potency and architecture in the aging skin.
Pancreatic stellate cells (PSCs) are a key component of tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) and contribute to drug resistance. c-MET receptor tyrosine kinase activation plays an important role in tumorigenesis in different cancers including PDAC. In this study, effects of PSC conditioned medium (PCM) on c-MET phosphorylation (by immunocytochemistry enzyme-linked immunosorbent assay (ELISA)) and drug response (by sulforhodamine B assay) were investigated in five primary PDAC cells.
The newly synthesized coumarin derivative with dopamine, 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione, was completely structurally characterized by X-ray crystallography. It was shown that several types of hydrogen bonds are present, which additionally stabilize the structure. The compound was tested in vitro against different cell lines, healthy human keratinocyte HaCaT, cervical squamous cell carcinoma SiHa, breast carcinoma MCF7, and hepatocellular carcinoma HepG2.
Multidrug resistance (MDR) in cancer cells is often associated with overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2). Modulators of these transporters might be helpful in overcoming MDR. Moreover, exploiting collateral sensitivity (CS) could be another approach for efficient treatment of cancer.
In this study we report the detection of the recently described mcr-4 gene in two human isolates of Salmonella enterica serovar Typhimurium. The strains were isolated from faecal samples of two Italian patients with gastroenteritis, collected in 2016. The identified mcr-4 genes (variant mcr-4.2) differed from the mcr-4 gene originally described in a Salmonella strain of swine origin from Italy. Salmonella species could represent a hidden reservoir for mcr genes. © 2018, European Centre for Disease Prevention and Control (ECDC). All rights reserved.
Background and aim: Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between ampli-cons.
The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a critical concern worldwide. In Italy, CPE isolates are very frequent, with the KPC enzyme types strongly predominant whereas the New Delhi metallo-?-lactamase (NDM) enzymes are extremely rare. Here we report the first detection of NDM-5-producing Escherichia coli sequence type 167 (ST167) isolates from two patients with urinary tract infection (Ec001 and Ec002 from urines), including one with colonisation (Ec003 from faeces) admitted to the same hospital 2 months apart in 2017.
Objectives In this study we compared the recently described mcr-4-positive Salmonella enterica monophasic variant, isolated in 2016 in two Italian patients affected by gastroenteritis, with the first mcr-4-positive Salmonella isolate identified in 2013 in a pig at slaughter in Italy. Methods WGS of the two Salmonella isolates of human origin was performed using a MiSeq instrument (Illumina).
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma