Role of c-MET inhibitors in overcoming drug resistance in spheroid models of primary human pancreatic cancer and stellate cells
Pancreatic stellate cells (PSCs) are a key component of tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) and contribute to drug resistance. c-MET receptor tyrosine kinase activation plays an important role in tumorigenesis in different cancers including PDAC. In this study, effects of PSC conditioned medium (PCM) on c-MET phosphorylation (by immunocytochemistry enzyme-linked immunosorbent assay (ELISA)) and drug response (by sulforhodamine B assay) were investigated in five primary PDAC cells. In novel 3D-spheroid co-cultures of cyan fluorescence protein (CFP)-firefly luciferase (Fluc)-expressing primary human PDAC cells and green fluorescence protein (GFP)-expressing immortalized PSCs, PDAC cell growth and chemosensitivity were examined by luciferase assay, while spheroids’ architecture was evaluated by confocal microscopy. The highest phospho-c-MET expression was detected in PDAC5 and its subclone sorted for “stage specific embryonic antigen-4" (PDAC5 (SSEA4)). PCM of cells pre-incubated with PDAC conditioned medium, containing increased hepatocyte growth factor (HGF) levels, made PDAC cells significantly more resistant to gemcitabine, but not to c-MET inhibitors. Hetero-spheroids containing both PSCs and PDAC5 (SSEA4) cells were more resistant to gemcitabine compared to PDAC5 (SSEA4) homo-spheroids. However, c-MET inhibitors (tivantinib, PHA-665752 and crizotinib) were equally effective in both spheroid models. Experiments with primary human PSCs confirmed the main findings. In conclusion, we developed spheroid models to evaluate PSC-PDAC reciprocal interaction, unraveling c-MET inhibition as an important therapeutic option against drug resistant PDAC. © 2019, MDPI AG. All rights reserved.