Combination of connectivity and spectral features for Motor-Imagery BCI
In brain-computer interfaces (BCI), the detection of different mental states is a key element. In Motor Imagery (MI)-based BCIs, the considered features typically rely on the power spectral density (PSD) of brain signals, but alternative features can be explored looking for better performance. One possibility is the integration of functional connectivity (FC). These features quantify the interactions between different brain areas and they could represent a valuable tool to detect differences between two mental conditions.