Humans

A Lipophilic 4-Phenylbutyric Acid Derivative That Prevents Aggregation and Retention of Misfolded Proteins

Chemical chaperones prevent protein aggregation. However, the use of chemical chaperones as drugs against diseases due to protein aggregation is limited by the very high active concentrations (mm range) required to mediate their effect. One of the most common chemical chaperones is 4-phenylbutyric acid (4-PBA). Despite its unfavorable pharmacokinetic properties, 4-PBA was approved as a drug to treat ornithine cycle diseases. Here, we report that 2-isopropyl-4-phenylbutanoic acid (5) has been found to be 2–10-fold more effective than 4-PBA in several in vitro models of protein aggregation.

Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T

Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of ?-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of ?-satellite DNA repeats. Here, we monitored centromeric repeat stability in human cells using chromosome-orientation fluorescent in situ hybridization (CO-FISH).

ZSCAN10 Expression Corrects the Genomic Instability of iPSCs From Aged Donors

Induced pluripotent stem cells (iPSCs), which are used to produce transplantable tissues, may particularly benefit older patients, who are more likely to suffer from degenerative diseases. However, iPSCs generated from aged donors (A-iPSCs) exhibit higher genomic instability, defects in apoptosis and a blunted DNA damage response compared with iPSCs generated from younger donors.

Technological and theoretical aspects for testing electroporation on liposomes

Recently, the use of nanometer liposomes as nanocarriers in drug delivery systems mediated by nanoelectroporation has been proposed. This technique takes advantage of the possibility of simultaneously electroporating liposomes and cell membrane with 10-nanosecond pulsed electric fields (nsPEF) facilitating the release of the drug from the liposomes and at the same time its uptake by the cells. In this paper the design and characterization of a 10 nsPEF exposure system is presented, for liposomes electroporation purposes.

ICNIRP statement on diagnostic devices using non-ionizing radiation: Existing regulations and potential health risks

Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered.

Carotid plaque detection improves the predictve value of CHA2DS2-VASc score in patients with non-valvular atrial fibrilation. the ARAPACIS study

Background and aims: Vascular disease (VD), as assessed by history of myocardial infarction or peripheral artery disease or aortic plaque, increases stroke risk in atrial fibrillation (AF), and is a component of risk assessment using the CHA2DS2-VASc score. We investigated if systemic atherosclerosis as detected by ultrasound carotid plaque (CP) could improve the predictive value of the CHA2DS2-VASC score. Methods: We analysed data from the ARAPACIS study, an observational study including 2027 Ialian patents with non-valvular AF, in whom CP was detected using Doppler Ultrasonography.

Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study

Human aquaporin 4 has been studied using non-equilibrium molecular dynamics simulations in the absence and presence of pulses of external electric fields. The pulses were 100 ns in duration and 0.005-0.015 V/angstrom in intensity acting along the pores' axes. Water diffusivity and the dipolar response of various residues of interest within the pores have been studied. Results show relatively little change in levels of water permeability per se within aquaporin channels during axially oriented field impulses, although care must be taken with regard to statistical certainty.

Stimulation strategies for tinnitus suppression in a neuron model

Tinnitus is a debilitating perception of sound in the absence of external auditory stimuli. It may have either a central or a peripheral origin in the cochlea. Experimental studies evidenced that an electrical stimulation of peripheral auditory fibers may alleviate symptoms but the underlying mechanisms are still unknown. In this work, a stochastic neuron model is used, that mimics an auditory fiber affected by tinnitus, to check the effects, in terms of firing reduction, of different kinds of electric stimulations, i.e., continuous wave signals and white Gaussian noise.

Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach

Background: Molecular mechanisms of interaction between cells and extremely low frequency magnetic fields (ELF-MFs) still represent a matter of scientific debate. In this paper, to identify the possible primary source of oxidative stress induced by ELF-MF in SH-SY5Y human neuroblastoma cells, we estimated the induced electric field and current density at the cell level. Methods: We followed a computational multiscale approach, estimating the local electric field and current density from the whole sample down to the single cell level.

Aqueous polythiophene electrosynthesis. A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications

In this study, polythiophene copolymers have been used as modifier for electrode surfaces in order to allow the immobilization of active pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and to simultaneously improve the direct electrical connection of the enzyme with the electrode. Polymer films are electrosynthesized in aqueous solution without the need of surfactants onto carbon nanotubes modified gold electrodes from mixtures of 3-thiopheneacetic acid (ThCH2CO2H) and 3-methoxythiophene (ThOCH3) using a potentiostatic pulse method.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma