motoneuron

Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3′UTR binding

Increasing evidence suggests that in Amyotrophic Lateral Sclerosis (ALS) mutated RNA binding proteins acquire aberrant functions, leading to altered RNA metabolism with significant impact on encoded protein levels. Here, by taking advantage of a human induced pluripotent stem cell-based model, we aimed to gain insights on the impact of ALS mutant FUS on the motoneuron proteome.

FUS mutant human motoneurons display altered transcriptome and microRNA pathways with implications for ALS pathogenesis

The FUS gene has been linked to amyotrophic lateral sclerosis (ALS). FUS is a ubiquitous RNA-binding protein, and the mechanisms leading to selective motoneuron loss downstream of ALS-linked mutations are largely unknown. We report the transcriptome analysis of human purified motoneurons, obtained from FUS wild-type or mutant isogenic induced pluripotent stem cells (iPSCs). Gene ontology analysis of differentially expressed genes identified significant enrichment of pathways previously associated to sporadic ALS and other neurological diseases.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma