nonlinear optics

3D time-domain beam mapping for studying nonlinear dynamics in multimode optical fibers

Characterization of the complex spatiotemporal dynamics of optical beam propagation in nonlinear multimode fibers requires the development of advanced measurement methods, capable of capturing the real-time evolution of beam images. We present a new space–time mapping technique, permitting the direct detection, with picosecond temporal resolution, of the intensity from repetitive laser pulses over a grid of spatial samples from a magnified image of the output beam.

Multiphoton-absorption-excited up-conversion luminescence in optical fibers

We experimentally demonstrate a previously unforeseen nonlinear effect in optical fibers: up-conversion luminescence generation excited by multiphoton absorption of femtosecond infrared pulses. We directly estimate the average number of photons involved in the up-conversion process, by varying the wavelength of the pump source. We highlight the role of nonbridging oxygen hole centers and oxygen-deficient center defects and directly compare the intensity of side-scattered luminescence with numerical simulations of pulse propagation.

Mode decomposition of multimode optical fiber beams by phase-only spatial light modulator

Multimode optical fibers (MMF) recently attracted a renewed attention, because of their
potential for spatial division multiplexing, medical imaging and high-power fiber lasers, thanks
to the discovery of new nonlinear optical effects, such as Kerr beam self-cleaning,
spatiotemporal mode-locking, and geometric parametric instability, to name a few. The main
feature of these effects is that many transverse modes are involved in nonlinear interactions. To
advance our understanding, it is necessary to analyse the modal content of beams at the output

Coherent combining of self-cleaned multimode beams

A low intensity light beam emerges from a graded-index, highly multimode optical fibre with a speckled shape, while at higher intensity the Kerr nonlinearity may induce a spontaneous spatial self-cleaning of the beam. Here, we reveal that we can generate two self-cleaned beams with a mutual coherence large enough to produce a clear stable fringe pattern at the output of a nonlinear interferometer. The two beams are pumped by the same input laser, yet are self-cleaned into independent multimode fibres.

Terahertz-based retrieval of the spectral phase and amplitude of ultrashort laser pulses

Terahertz (THz) radiation is of great interest for a variety of applications, e.g., particle accelerations, spectroscopy investigations of quantum systems, and high-field study of materials. One of the most common laser-based processes to produce THz pulses is optical rectification, which transduces an infrared pump laser to the THz domain (0.1–20 THz). In this work, we propose and theoretically describe a method to characterize the amplitude and phase of the electric field of the pump laser pulse relying on THz generation and detection.

Addressable refraction and curved soliton waveguides using electric interfaces

A great deal of interest over the years has been directed to the optical space solitons for the possibility of realizing 3D waveguides with very low propagation losses. A great limitation in their use for writing complex circuits is represented by the impossibility of making curved structures. In the past, solitons in nematic liquid crystals, called nematicons, were reflected on electrical interfaces, and recently on photorefractive spatial solitons as well.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma