nonlinear optics

Frequency comb generation through the locking of domain walls in doubly resonant dispersive optical parametric oscillators

In this Letter we theoretically investigate the formation of localized temporal dissipative structures, and their corresponding frequency combs in doubly resonant dispersive optical parametric oscillators. We derive a nonlocal mean field model, and show that domain wall locking allows for the formation of stable coherent optical frequency combs.

Wavefront shaping for optimized many-mode Kerr beam self-cleaning in graded-index multimode fiber

We report experimental results, showing that the Kerr beam self-cleaning of many low-order modes in a graded-index multimode fiber can be controlled thanks to optimized wavefront shaping of the coherent excitation beam. Adaptive profiling of the transverse input phase was utilized for channeling the launched power towards a specific low-order fiber mode, by exploiting nonlinear coupling among all guided modes. Experiments were carried out with 7 ps pulses at 1064 nm injected in a five meters long multimode fiber operating in the normal dispersion regime.

Optical generation and control of spatial Riemann waves

We extend the concept of Riemann waves (RWs) to the spatial domain and demonstrate for the first time, to the best of our knowledge, Riemann beams with a propagation scenario allowing controllable shock formation in a nonlinear optical system. Similar to their standard counterparts, "shifted" RWs are characterized by a local propagation speed proportional to their local amplitude. Their steepening dynamics can be judiciously controlled by means of an additional phase term.

Optical polarization rogue waves from supercontinuum generation in zero dispersion fiber pumped by dissipative soliton

Optical rogue waves emerge in nonlinear optical systems with extremely large amplitudes, and leave without a trace. In this work, we reveal the emergence of optical polarization rogue waves in supercontinuum generation from a zero-dispersion fiber, pumped by a dissipative soliton laser. Flat spectral broadening is achieved by modulation instability, followed by cascaded four-wave-mixing. In this process, we identify the emergence of optical polarization rogue waves, based on the probability density function of the relative distance among polarization states.

Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape

We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm.

Refractive index profile tailoring of multimode optical fibers for the spatial and spectral shaping of parametric sidebands

In this paper, we introduce the concept of spatial and spectral control of nonlinear parametric sidebands in multimode optical fibers by tailoring their linear refractive index profile. In all cases, the pump experiences Kerr self-cleaning, leading to a bell-shaped beam profile. Geometric parametric instability, owing to quasi-phase matching from the dynamic grating generated via the Kerr effect by pump self-imaging, leads to frequency multicasting of beam self-cleaning across a wideband array of sidebands.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma