stem cells
Neural stem cells in neuropsychiatric disorders
The precise control of neural stem cell (NSC) proliferation and differentiation is crucial for the development and function of the human brain. Here, we review the emerging links between the alteration of embryonic and adult neurogenesis and the etiology of neuropsychiatric disorders (NPDs) such as autism spectrum disorders (ASDs) and schizophrenia (SCZ), as well as the advances in stem cell-based modeling and the novel therapeutic targets derived from these studies
Fibrous dysplasia
Fibrous dysplasia of bone (FD) (OMIM #174800) is an uncommon skeletal disorder with a broad spectrum of clinical presentation. On one end of the spectrum, patients may present in adulthood with an incidentally discovered, asymptomatic radiographic finding of no clinical significance. On the other end of the spectrum, patients present early in life with disabling disease. The disease may involve one bone (monostotic FD), multiple bones (polyostotic FD), or the entire skeleton (panostotic FD) [1–3].
Modeling medulloblastoma in vivo and with human cerebellar organoids
Medulloblastoma (MB) is the most common malignant brain tumor in children and among the subtypes, Group 3 MB has the worst outcome. Here, we perform an in vivo, patient-specific screen leading to the identification of Otx2 and c-MYC as strong Group 3 MB inducers. We validated our findings in human cerebellar organoids where Otx2/c-MYC give rise to MB-like organoids harboring a DNA methylation signature that clusters with human Group 3 tumors.
Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells
Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG).