WCLL

Influence of PbLi hydraulic path and integration layout on MHD pressure losses

A critical point in the design of liquid metal blankets for fusion reactors is the accurate estimate of magnetohydrodynamic (MHD) pressure losses caused by the interaction between flowing breeder and magnetic field. In the Water-Cooled Lithium Lead (WCLL), the liquid metal (PbLi) is used as tritium breeder and carrier, whereas power extraction is delegated to water, thus allowing to minimize the breeder velocity. However, pressure drop for the PbLi loop is expected to remain significant due to high field intensity and direct electrical contact at fluid/wall interface.

Study of EU DEMO WCLL breeding blanket and primary heat transfer system integration

The Water-Cooled Lithium Lead breeding blanket is a candidate option for the realization of European DEMO power plant. One of the main functions of the breeding blanket is to recover the thermal power from the first wall and the breeding zone and to drive it to the Primary Heat Transfer System. Moreover, due to the DEMO pulsed operation, an Energy Storage System is foreseen in order to ensure thermal energy availability and reduce cycling loading during dwell time.

Thermal-hydraulic modeling and analyses of the water-cooled EU DEMO using RELAP5 system code

The conceptual design of the Primary Heat Transfer System (PHTS) of the water-cooled European (EU) DEMO foresees two independent cooling circuits, the breeding zone PHTS and the first wall PHTS. During the pulse time (120 minutes) the first delivers thermal power to the turbine, the latter delivers thermal power to the Intermediate Heat Transfer System (IHTS) equipped by an Energy Storage System (ESS).

On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances

The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems.

Thermal-hydraulic modeling and analysis of the Water Cooling System for the ITER Test Blanket Module

The Water Cooled Lithium Lead (WCLL) is one of the selected breeding blanket (BB) concepts to be investigated in the EUROfusion Breeding Blanket Project (WPBB), and it was also recently chosen as one of the mock-up for ITER Test Blanket Module (TBM) program. The program foresees the test of different BB mock-ups, called Test Blanket Modules, with all the related ancillary systems.

Thermal-hydraulic analysis of the DEMO WCLL elementary cell: BZ tubes layout optimization

The Water-Cooled Lithium-Lead (WCLL) Breeding Blanket (BB) is a key component in charge of ensuring Tritium production, shield the Vacuum Vessel and remove the heat generated by plasma thermal radiation and nuclear reactions. It relies on PbLi eutectic alloy adopted as breeder and neutron multiplier and refrigerate by subcooled pressurized water. The last function is fulfilled by two independent cooling systems: First Wall (FW) that faces the plasma heat flux and the Breeding Zone (BZ) that removes the deposited power of neutron and photon interaction.

Optimization of the first wall cooling system for the DEMO WCLL blanket

The Water-Cooled Lithium-Lead (WCLL) Breeding Blanket (BB) is a key component in charge of ensuring Tritium production, shield the Vacuum Vessel and remove the heat generated by plasma thermal radiation and nuclear reactions. It relies on PbLi eutectic alloy adopted as breeder and neutron multiplier and refrigerate by subcooled pressurized water. The last function is fulfilled by two independent cooling systems: First Wall (FW) that faces the plasma heat flux and the Breeding Zone (BZ) that removes the deposited power of neutron and photon interaction.

CFD simulation of the magnetohydrodynamic flow inside the WCLL breeding blanket module

The interaction between the molten metal and the plasma-containing magnetic field in the breeding blanket causes the onset of a magnetohydrodynamic (MHD) flow. To properly design the blanket, it is important to quantify how and how much the flow features are modified compared with an ordinary hydrodynamic flow. This paper aims to characterize the evolution of the fluid inside one of the proposed concepts for DEMO, the Water-Cooled Lithium Lead (WCLL), focusing on the central cell of the equatorial outboard module.

WCLL breeding blanket design and integration for DEMO 2015: status and perspectives

Water-cooled lithium-lead breeding blanket is considered a candidate option for European DEMO nuclear fusion reactor. ENEA and the linked third parties have proposed and are developing a multi-module blanket segment concept based on DEMO 2015 specifications. The layout of the module is based on horizontal (i.e. radial-toroidal) water-cooling tubes in the breeding zone, and on lithium lead flowing in radial-poloidal direction. This design choice is driven by the rationale to have a modular design, where a basic geometry is repeated along the poloidal direction.

Numerical study of laminar magneto-convection in a differentially heated square duct

Magnetohydrodynamic pressure drops are one of the main issues for liquid metal blanket in fusion reactors. Minimize the fluid velocity at few millimeters per second is one strategy that can be employed to address the problem. For such low velocities, buoyant forces can effectively contribute to drive the flow and therefore must be considered in the blanket design. In order to do so, a CFD code able to represent magneto-convective phenomena is required. This work aims to gauge the capability of ANSYS© CFX-15 to solve such cases.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma