Gamma rays and neutrinos at energies beyond 100 TeV: multi-messenger investigation of extreme astrophysical sources in the Universe.

Anno
2021
Proponente Irene Di Palma - Professore Associato
Sottosettore ERC del proponente del progetto
PE9_10
Componenti gruppo di ricerca
Componente Categoria
Marco Drago Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Stefano Campion Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Silvia Celli Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Componente Qualifica Struttura Categoria
Carlo Nicolau Technologist INFN Roma1 Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Angela Zegarelli PhD Student Dipartimento di Fisica, Universita' Sapienza Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Giuseppe Di Sciascio Director of research INFN Tor Vergata Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Felix Aharonian Full Professor Dublin Institute for Advanced Studies and Max Planck for Nuclear Physics Heidelberg Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Abstract

The recent LHAASO observations have unveiled the presence of extremely powerful accelerators in the Galactic Plane, emitting radiation with energy well above 100 TeV, possibly responsible for the cosmic-ray (CR) spectrum up to 1 PeV, and beyond. The localization of such sources will allow to identify the PeVatrons once the physical mechanism at the origin of the observed radiation will be firmly established. To this extent, neutrinos constitute unambiguous probes of proton acceleration and in situ interaction. Furthermore, the simultaneous observation of gravitational waves (GWs) might bring a deeper knowledge about the mechanism operating the inner engine, yielding clear information on the nature of the source.
These arguments show the importance of tackling simultaneously the wealth of information that arise from the different messengers, namely CRs, neutrinos, photons and GWs. The combined study of the Universe with all the aforementioned probes offers unique opportunities, as demonstrated by the observation of the merging of two neutron stars in 2017. The prompt finding of a GW and of a Gamma-Ray Burst (GRB) was followed by the most extensive worldwide observational campaign, using about 70 observatories on all continents and in space. This key event in science was possible thanks to the fast dissemination of information among possible partners. In such a framework, we plan to combine measurements from several observatories (LHAASO, ANTARES, KM3NeT, LIGO-Virgo) in synergical energy ranges, and perform tailored data analyses, supplemented by a solid interpretation of the physical mechanism at their origin. In particular, we will explore the 12 recently detected LHAASO extremely energetic sources, in order to shed light on the nature of such ground-breaking emission.

ERC
PE9_10, PE9_13
Keywords:
FISICA DEI NEUTRINI, FISICA ASTROPARTICELLARE, ASTRONOMIA GRAVITAZIONALE

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma