Diffusion processes on irregular structures

Anno
2021
Proponente Raffaela Capitanelli - Professore Associato
Sottosettore ERC del proponente del progetto
PE1_8
Componenti gruppo di ricerca
Componente Categoria
Maria Rosaria Lancia Componenti strutturati del gruppo di ricerca
Simone Creo Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Luisa Moschini Componenti strutturati del gruppo di ricerca
Componente Qualifica Struttura Categoria
Paola Vernole Esperto Qualifificato SBAI Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Massimo Cefalo Collaboratore Ingegneria informatica automatica e gestionale Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Salvatore Fragapane Assegnista Universita Cattolica del Sacro Cuore-ROMA Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Abstract

Many physical and biological phenomena take place across disordered and wild media. For instance, diffusion processes in physical membranes, the current flow across rough electrodes in electrochemistry, diffusion of sprays in the lungs are transport phenomena which occur, from the geometrical point of view, across irregular layers. Irregular structures provide appropriate frameworks to irrigation models, bronchial systems, root infiltration, tree foliage and other kinds of applications where surface effects are dominant. The role of surface roughness also in contact mechanics is relevant to processes ranging from adhesion to friction wear and lubrication. It also has a deep impact on applied sciences, including coating technology and design of microelectro-mechanical systems.
In particular, DIFFUSION PROCESSES ON IRREGULAR STRUCTURES could be applied to get a deeper insight in many physical phenomena such as particle diffusion, spin diffusion, and diffusion regimes in electrochemistry.
In this framework, fractal layers or boundaries provide new interesting setting to describe wild or irregular media and bodies in which "boundaries" are "large" while bulk is "small". Hence, in the theory of boundary value problems, a new perspective emerges to model phenomena in which the surface effects are enhanced.
The present project is concerned with the study of Partial Differential Equations arising as models of diffusion processes on irregular structures: domains with non-smooth boundaries, fractal boundaries and fractal layers.
Problems on irregular structures are particularly significant because they provide us with a deep insight into an arena where Euclidean and fractal concepts and techniques cross each other. Such an interbreeding is indeed the marking trait of the present research project.

ERC
PE1_8, PE1_11, PE1_21
Keywords:
EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI, ANALISI FUNZIONALE, ANALISI NUMERICA, MODELLAZIONE NUMERICA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma