New strategies in the diagnosis of thyroid nodule: TI-RADS risk stratification systems and Elastography versus Computer Aided Diagnosis software. The TECAD (TIRADS Elastography and Computer Assisted Diagnosis) Study

Anno
2021
Proponente Vito Cantisani - Professore Associato
Sottosettore ERC del proponente del progetto
LS7_1
Componenti gruppo di ricerca
Componente Categoria
Vito D'Andrea Componenti strutturati del gruppo di ricerca
Salvatore Sorrenti Componenti strutturati del gruppo di ricerca
Pietro Monsurro' Componenti strutturati del gruppo di ricerca
Francesco Maria Drudi Componenti strutturati del gruppo di ricerca
Elisa Giannetta Componenti strutturati del gruppo di ricerca
Daniele Fresilli Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Abstract

Thyroid nodules are a very common finding, with a prevalence greater than 50% in women and older populations (>60 years old). The clinical impact is primarily represented by the precocious identification of thyroid nodule malignant potential, representing the 5-10% of thyroid nodule. Currently the gold standard for the diagnosis of thyroid tumors is fine needle aspiration cytology (FNAC), but in the last decades there have been many efforts in order to reduce the number of unnecessary procedures by enhancing the diagnostic accuracy of ultrasound. Ultrasonography (US) is the gold standard imaging in thyroid diseases, offering many perks such as being economic and non invasive, besides having a wide diffusion on the territory. The improvements in this field have been aimed on: 1) developing new techniques in order to better characterize thyroid nodules, such as elastography; 2) identifying the neoplastic iconographic features to create classification systems able to stratify nodules on a risk basis, such as TI-RADS; 3) create automated
systems based on artificial intelligence to help physician in detecting and evaluating thyroid nodules, on the model of Computer Aided Diagnosis (CAD) systems already existing in other radiological fields.
The aim of the present project is therefore to assess the diagnostic accuracy and interobserver variability of ultrasound techniques performed by physicians with different levels of expertise using two distinct TI-RADS and elastography in comparison with two CAD systems, and to create a repository for newer AI System.

ERC
LS7_1, PE6_7, LS4_6
Keywords:
TIROIDE, DIAGNOSTICA PER IMMAGINI, INTELLIGENZA ARTIFICIALE, ENDOCRINOLOGIA, CHIRURGIA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma