Payload and cryostat research towards Third Generation Gravitational Wave detectors

Anno
2020
Proponente Ettore Majorana - Professore Ordinario
Sottosettore ERC del proponente del progetto
PE2_1
Componenti gruppo di ricerca
Componente Categoria
Sibilla Di Pace Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Mattia Boldrini Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Naurang Lal Saini Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Marco Vignati Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Antonio Carcaterra Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Paola Leaci Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Piero Rapagnani Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Valentina Mangano Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Componente Qualifica Struttura Categoria
Paola Puppo Ricercatore INFN Sezione di Roma Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Luca Naticchioni Ricercatore INFN Sezione di Roma Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Abstract

First observations of gravitational waves stimulated several astrophysics fields, opening to the era of gravitational wave imaging of the universe. The natural outcome of the efforts spent on current detectors in the last five years is the rekindling of the planning concerning the next generation of ground-based detectors, whose target is to detect coalescence gravitational-wave emission from the whole universe and extending the bandwidth to the lowest frequency technically possible with ground-based devices. Concepts and ideas on viable solutions leading that target were reflected on the literature in the last ten years , but the science case for 3rd generation detector (3G) network was fully motivated only after first observations. Compared to present detectors, 2nd generation (2G), 3G interferometers will have longer baselines, ranging from 10 to 40 km depending on the optical layout adopted. In the specific case of the Einstein Telescope, conceived under worldwide voluntary effort and sustained by European auspices through dedicated R&D programs (FP6-7, Horizon2020), other two relevant features are foreseen: underground and cryogenics.
Gravitational wave group at Sapienza pioneered concerned cryogenics R&D and through the years tightly collaborated with KAGRA on payload, seismic suspension and control issues. Now we have a great opportunity to further contribute to the design of core solutions leading to ET. We apply for a support that will be finalised along two main lines, both concerning payload cryogenics: A) test-mass suspension material performance at low temperature and B) Vibration and Structural-dynamics studies of large cryostat, which are meant to host 500 kg payloads. Indeed, the two themes of this research are tightly interlaced. We have matured specific expertise and worldwide collaboration with the most advanced groups pursuing this research and plan to let it further grow-up at Sapienza towards ET technical design.

ERC
PE2_1, PE9_17, PE7_3
Keywords:
ONDE GRAVITAZIONALI, CRIOGENIA, FISICA DEI RIVELATORI, MECCANICA APPLICATA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma