Evolutive PDEs in heterogeneous media

Anno
2020
Proponente Corrado Mascia - Professore Ordinario
Sottosettore ERC del proponente del progetto
PE1_11
Componenti gruppo di ricerca
Componente Categoria
Andrea Davini Componenti strutturati del gruppo di ricerca
Andrea Terracina Componenti strutturati del gruppo di ricerca
Antonio Siconolfi Componenti strutturati del gruppo di ricerca
Abstract

Our research proposal is concerned with the mathematical analysis of nonlinear evolutive PDEs focussing on well-posedness, large time-behavior and other qualitative properties determined by the presence of an underlying heterogeneous, possibly non-smooth, structure, either at the level of a persistent internal structure (random media, network, anisotropicity), at the level of an initial/boundary described by some highly non-smooth and singular data (discontinuous or Radon measures).

Depending on the applications, four prototype equations appear: Reaction-Diffusion systems (RD), Conservation Laws (CL), Hamilton-Jacobi equations (HJ), and Mean Field Games (MFG). The common denominator is the study of the appearance of coherent heterogeneous patterns in the presence of an underlying low-regularity general framework.

The topics considered are
a. Front propagation in heterogeneous and anisotropic environments (RD and CL);
b. Singular and Radon measure initial data (CL and HJ);
c. Homogenization in random media in the case of non-convex hamiltonians (HJ);
d. Networks and graphs structures (HJ);
e. Long time behaviour in the first-order case (MFG).
f. Fluid-particle interaction model (CL).

ERC
PE1_11, PE1_8, PE1_20
Keywords:
EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI, FENOMENI NON LINEARI, SISTEMI DINAMICI, EQUAZIONI DIFFERENZIALI ORDINARIE, MODELLI MATEMATICI DEI SISTEMI COMPLESSI

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma