Nonlinear Elliptic Partial Differential Equations : existence and geometric aspects of solutions

Anno
2017
Proponente Filomena Pacella - Professore Ordinario
Sottosettore ERC del proponente del progetto
Componenti gruppo di ricerca
Componente Categoria
Francesca De Marchis Componenti il gruppo di ricerca
Giulio Galise Dottorando/Assegnista/Specializzando componente il gruppo di ricerca
Isabella Birindelli Componenti il gruppo di ricerca
Abstract

The project focuses on the study of some classes of nonlinear elliptic equation which arise in Geometry and Applied Sciences. The aim is to analyze the following questions :

1) Surfaces with constant mean curvature and related isoperimetric inequalities.

2) The problem of prescribing the Gaussian curvature on surfaces with conical singularities.

3) Qualitative properties of positive solutions of Lane-Emden problems in planar convex domains.

4) Asymptotic behavior and concentration phenomena of solutions of fully nonlinear elliptic equations involving the Pucci operators in a ball.

5) Regularity results for solutions of a class of degenerate fully nonlinear elliptic equations.

6) Elliptic and parabolic problems with a Hardy potential.

ERC
Keywords:
name

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma