Clinical outcomes in cancer patients (a machine learning approach)

Anno
2019
Proponente Francesca De Felice - Professore Associato
Sottosettore ERC del proponente del progetto
LS7_6
Componenti gruppo di ricerca
Componente Categoria
Gilberto Castellani Componenti strutturati del gruppo di ricerca
Orlando Brugnoletti Componenti strutturati del gruppo di ricerca
Componente Qualifica Struttura Categoria
Franco Moriconi Professore ordinario Dipartimento di Economia, Finanza e Statistica - Università degli Studi di Perugia Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Abstract

Management of cancer patients is challenging. At present, multidisciplinary unit, involving different professional figures from all relevant specialties, is an essential entity to assure the highest cure rate, independently of primary tumor site. A rigorous pre- and post-treatment multidisciplinary work-up is required to plan the more appropriate therapy and follow-up program.
Despite significant progress in the conventional modalities of surgery, radiotherapy and chemotherapy in the vast majority of common - breast, prostate, lung, colorectal - and uncommon - anal canal, head and neck - cancers, conclusive evidence of novel strong and independent prognostic factors for survival in cancer patients is lacking. Due to advance knowledge of the genetic mechanisms, biomarkers for cancer activity and optimal treatments, other favorable prognostic factors associated with tumor could be ruled out as an explanation for survival difference. To promote and increase patient stratification, a machine learning approach should be proposed and each multidisciplinary unit should serve as a platform to accumulate clinical data. The hope is to define robust tools to improve decision-making process.

ERC
LS7_6, PE6_11, LS7_10
Keywords:
CANCRO, MEDICINA NUCLEARE E RADIOTERAPIA, ONCOLOGIA, CHIRURGIA, ANALISI STATISTICA DEI DATI

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma