Breaking the limits of hard problems by thermal and quantum fluctuations

Anno
2019
Proponente Federico Ricci Tersenghi - Professore Ordinario
Sottosettore ERC del proponente del progetto
PE3_15
Componenti gruppo di ricerca
Componente Categoria
Filippo Cesi Componenti strutturati del gruppo di ricerca
Andrea Pelissetto Componenti strutturati del gruppo di ricerca
Carlo Presilla Componenti strutturati del gruppo di ricerca
Componente Qualifica Struttura Categoria
Luca Leuzzi Ricercatore CNR CNR - Istituto Nanotec Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Tommaso Rizzo Ricercatore CNR CNR - Istituto Sistemi Complessi Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Abstract

Our task in this proposal is to find and test new algorithms that can optimize, learn from or satisfy constraints that occur in the complex systems, driven by vast amounts of real-world data, that now manage our lives. Even when idealized, these problems are often exponentially hard in principle yet, if the constraints are few enough, easy to solve in practice. But small increases in complexity can make problems very hard and with larger increases, impossible. This pattern of easy/hard/impossible is ubiquitous and is often found with sharp boundaries, like phase transitions, separating the regions. We focus on the hard phases, for which little science exists to understand the distributions of difficulty and the best methods of solution. We seek to unify the phase diagrams of these problems and to create powerful approaches to their approximate solution on large but finite scales, bringing a combination of formal analysis and computer experimentation to bear. By combining the replica and the cavity methods of analysis with simple practical methods that go arbitrarily far from equilibrium, do not satisfy any detailed balance condition and are known to be able to break many sophisticated and putatively absolute bounds, we believe we can achieve an important advance in optimization, constraint satisfaction, and inference, with impact on applications. We will focus on problems in which high entropy and low signal to noise impede search, leading to glassy behaviour even though a highly ordered phase can easily be shown to exist. Reconstructing a hidden structure using small `hints' is then a critical test of inference.

ERC
PE3_15
Keywords:
SISTEMI COMPLESSI, SIMULAZIONE NUMERICA, MECCANICA STATISTICA, FISICA STATISTICA DELLA MATERIA CONDENSATA, INFERENZA STATISTICA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma