Opensource Artificial Intelligence platform to solve complexity in Energy Systems and Fluid-Machinery

Anno
2019
Proponente Franco Rispoli - Professore Ordinario
Sottosettore ERC del proponente del progetto
PE8_5
Componenti gruppo di ricerca
Componente Categoria
Alessandro Corsini Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Michele Vincenzo Migliarese Caputi Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Domenico Borello Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Paolo Venturini Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Componente Qualifica Struttura Categoria
Fabrizio Bonacina Assegnista di Ricerca Dipartimento di Ingegneria Meccanica e Aerospaziale Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Abstract

Machine Learning methods have changed the approach to statistical analysis in many fields. In this project we propose to apply and fit the latest technologies in adversarial machine learning to the solution of turbomachinery flows, and in particular to three challenges that are still opened in this field: generation of syntethic turbulence for LES inflow conditions, turbulence modelling in rotating passages, particle cloud tracking.
To this aim an open-source platform will be created, with tools for Exploratory Data Analysis, to reduce and select the significant features in each problem.
Then, adversarial machine learning and variational auto encoders will be exploited to generate a synthetic turbulence for LES inflow conditions. In this way we expect to be able to train an artificial neural network to correctly reproduce the inherent statistics of turbulence. Another work package will be dedicated to correct RANS modelling of rotating passages using a machine-learnt model able to account for the effects of rotation and correct a standard model using LES or DNS data.
The third problem to study will be the use AI to predict the statistical behaviour of a cloud of particles dispersed inside a turbomachinery flow.
All the work will be carried out using our in-house CFD codes that will be interfaced with a Python platform of machine learning techniques through the C++ APIs for Python bridging.

ERC
PE8_5
Keywords:
APPRENDIMENTO AUTOMATICO, TURBOLENZA, MACCHINE A FLUIDO, FENOMENI DI TRASPORTO, INTELLIGENZA ARTIFICIALE

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma