Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts

01 Pubblicazione su rivista
Badiali Camilla, De Angelis Giulia, Simonetti Giovanna, Brasili Elisa, de Castro Tobaruela Eric, Purgatto Eduardo, Yin Heng, Valletta Alessio, Pasqua Gabriella
ISSN: 0721-7714

Water-soluble chitosan oligosaccharides (COS) affect xanthone and volatile organic compound content, as well as antifungal activity against human pathogenic fungi of extracts obtained from Hypericum perforatum root cultures.
Several studies have demonstrated the elicitor power of chitosan on xanthone biosynthesis in root cultures of H. perforatum. One of the major limitations to the use of chitosan, both for basic and applied research, is the need to use acidified water for solubilization. To overcome this problem, the elicitor effect of water-soluble chitosan oligosaccharides (COS) on the biosynthesis of both xanthones and volatile organic compounds (VOCs) was evaluated in the present study. The analysis of xanthones and VOCs was performed by HPLC and GC-MS headspace analysis. The obtained results showed that COS are very effective in enhancing xanthone biosynthesis. With 400 mg L-1 COS, a xanthone content of about 30 mg g-1 DW was obtained. The antifungal activity of extracts obtained with 400 mg L-1 COS was the highest, with MIC50 of 32 μg mL-1 against Candida albicans and 32-64 μg mL-1 against dermatophytes, depending on the microorganism. Histochemical investigations suggested the accumulation of isoprenoids in the secretory ducts of H. perforatum roots. The presence of monoterpenes and sesquiterpenes was confirmed by the headspace analysis. Other volatile hydrocarbons have been identified. The biosynthesis of most VOCs showed significant changes in response to COS, suggesting their involvement in plant-fungus interactions.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma