Lightweight metallic matrix composites. Development of new composites material reinforced with carbon structures

01 Pubblicazione su rivista
Valente Marco, Marini Danilo, Genova Virgilio, Quitadamo Alessia, Marra Francesco, Pulci Giovanni
ISSN: 2280-8000

Carbon nano/micro-structures used as fillers in metallic lightweight alloys matrix composites are receiving considerable attention in scientific research and industrial applications. Aluminum and magnesium are the most studied light metals used as matrices in metal composites materials principally for their low density (respectively 2.7 g/cm3 and 1.7 g/cm3) and low melting temperature (around 660 °C for both metals). A good interaction between matrix and fillers is the first step to obtain an increase in bulk properties; furthermore, the manufacturing procedure of the composite is fundamental in terms of quality of fillers dispersion. In this work the influence of surface modifications for three classes of carbon fillers for aluminum and magnesium alloy (AZ63) as matrices is
studied. In particular, the selected fillers are short carbon micro fibres (SCMFs), carbon woven fabrics (CWF) and unidirectional yarn carbon fibres (UYFs). The surface modification was carried out by a direct coating of pure nickel on fibres. The electroless pure nickel plating was chosen as coating technique and the use of hydrazine as reducing agent has prevented the co-deposition of other elements (such as P or B). SEM and EDS analyses were performed to study the effect of surface modifications. The mechanical properties of manufactured composites were evaluated by four point flexural tests
according to ASTM C1161 (room temperature). Results confirm improved interactions
between matrix and fillers, and the specific interaction was studied for any chosen
reinforcement.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma