Electromagnetic modelling and simulation of a high-frequency ground penetrating radar antenna over a concrete cell with steel rods

01 Pubblicazione su rivista
Pajewski Lara, Ventura Alessio
ISSN: 2533-3100

This work focuses on the electromagnetic modelling and simulation of a highfrequency
Ground-Penetrating Radar (GPR) antenna over a concrete cell with
reinforcing elements. The development of realistic electromagnetic models of GPR
antennas is crucial for accurately predicting GPR responses and for designing
new antennas. We used commercial software implementing the Finite-Integration
technique (CST Microwave Studio) to create a model that is representative of a
1.5 GHz Geophysical Survey Systems, Inc. antenna, by exploiting information
published in the literature (namely, in the PhD Thesis of Dr Craig Warren); our
CST model was validated, in a previous work, by comparisons with FiniteDifference
Time-Domain results and with experimental data, with very good
agreement, showing that the software we used is suitable for the simulation of
antennas in the presence of targets in the near field. In the current paper, we
firstly describe in detail how the CST model of the antenna was implemented;
subsequently, we present new results calculated with the antenna over a
reinforced-concrete cell. Such cell is one of the reference scenarios included in
the Open Database of Radargrams of COST Action TU1208 “Civil engineering
applications of Ground Penetrating Radar” and hosts five circular-section steel
rods, having different diameters, embedded at different depths into the concrete.
Comparisons with a simpler model, where the physical structure of the antenna
is not taken into account, are carried out; the significant differences between the
results of the realistic model and the results of the simplified model confirm the
importance of including accurate models of the actual antennas in GPR
simulations; they also emphasize how salient it is to remove antenna effects as a
pre-processing step of experimental GPR data. The simulation results of the
antenna over the concrete cell presented in this paper are attached to the paper
as ‘Supplementary materials.’

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma