DEMO WCLL BB breeding zone cooling system design: analysis and discussion

01 Pubblicazione su rivista
Edemetti Francesco, Martelli Emanuela, Tassone Alessandro, Caruso Gianfranco, Del Nevo Alessandro
ISSN: 0920-3796

The Water-Cooled Lithium-Lead (WCLL) Breeding Blanket (BB) is a key component in charge of ensuring Tritium self-sufficiency, shielding the Vacuum Vessel and removing the heat generated in the tokamak plasma. The last function is fulfilled by the First Wall (FW) and Breeding Zone (BZ) independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years in order to identify a configuration that guarantee Eurofer temperature below the limit (823 K) and good thermal-hydraulic performances (i.e. water outlet temperature 601 K). A research activity is conducted to study and compare four configurations, which rely on different arrangement of the stiffening plates (i.e. toroidal-poloidal and radial-poloidal), orientation of the cooling pipes (i.e. horizontal, vertical) and PbLi flow path. The analysis is carried out using a CFD codes, thus a threedimensional finite volume model of each configuration is developed, adopting the commercial ANSYS CFX code. The objective is to compare the BZ cooling system layouts, identifying and discussing advantages and key issues from the thermal-hydraulic point of view, also considering feedbacks from MHD and neutronics analyses. The research activity aims at laying the groundwork for the finalization of the WCLL blanket design, pointing out relevant thermal-hydraulic aspects.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma