Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus
Purpose: The aim of the present study is to investigate the impact of the near-infrared (NIRF) technology with indocyanine green (ICG) in robotic urologic surgery by performing a systematic literature review and to provide evidence-based expert recommendations on best practices in this field. Methods: All English language publications on NIRF/ICG-guided robotic urologic procedures were evaluated. We followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) statement to evaluate PubMed®, Scopus® and Web of Science™ databases (up to April 2019). Experts in the field provided detailed pictures and intraoperative video-clips of different NIRF/ICG-guided robotic surgeries with recommendations for each procedure. A unique QRcode was generated and linked to each underlying video-clip. This new exclusive feature makes the present the first “dynamic paper” that merges text and figure description with their own video providing readers an innovative, immersive, high-quality and user-friendly experience. Results: Our electronic search identified a total of 576 papers. Of these, 36 studies included in the present systematic review reporting the use of NIRF/ICG in robotic partial nephrectomy (n = 13), robotic radical prostatectomy and lymphadenectomy (n = 7), robotic ureteral re-implantation and reconstruction (n = 5), robotic adrenalectomy (n = 4), robotic radical cystectomy (n = 3), penectomy and robotic inguinal lymphadenectomy (n = 2), robotic simple prostatectomy (n = 1), robotic kidney transplantation (n = 1) and robotic sacrocolpopexy (n = 1). Conclusion: NIRF/ICG technology has now emerged as a safe, feasible and useful tool that may facilitate urologic robotic surgery. It has been shown to improve the identification of key anatomical landmarks and pathological structures for oncological and non-oncological procedures. Level of evidence is predominantly low. Larger series with longer follow-up are needed, especially in assessing the quality of the nodal dissection and the feasibility of the identification of sentinel nodes and the impact of these novel technologies on long-term oncological and functional outcomes.