Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff. impact on diagnostic accuracy for stenosis detection

01 Pubblicazione su rivista
De Santis Domenico, De Cecco Carlo N, Schoepf U Joseph, Nance John W, Yamada Ricardo T, Thomas Brooke A, Otani Katharina, Jacobs Brian E, Turner D Alan, Wichmann Julian L, Eid Marwen, Varga-Szemes Akos, Caruso Damiano, Grant Katharine L, Schmidt Bernhard, Vogl Thomas J, Laghi Andrea, Albrecht Moritz H
ISSN: 0938-7994

Objectives: To investigate the diagnostic accuracy of a modified three-material decomposition calcium subtraction (CS) algorithm for the detection of arterial stenosis in dual-energy CT angiography (DE-CTA) of the lower extremity runoff compared to standard image reconstruction, using digital subtraction angiography (DSA) as the reference standard. Methods: Eighty-eight patients (53 males; mean age, 65.9 ± 11 years) with suspected peripheral arterial disease (PAD) who had undergone a DE-CTA examination of the lower extremity runoff between May 2014 and May 2015 were included in this IRB-approved, HIPAA-compliant retrospective study. Standard linearly blended and CS images were reconstructed and vascular contrast-to-noise ratios (CNR) were calculated. Two independent observers assessed subjective image quality using a 5-point Likert scale. Diagnostic accuracy for ? 50% stenosis detection was analyzed in a subgroup of 45 patients who had undergone additional DSA. Diagnostic accuracy parameters were estimated with a random-effects logistic regression analysis and compared using generalized estimating equations. Results: CS datasets showed higher CNR (15.3 ± 7.3) compared to standard reconstructions (13.5 ± 6.5, p < 0.001). Both reconstructions showed comparable qualitative image quality scores (CS, 4.64; standard, 4.57; p = 0.220). Diagnostic accuracy (sensitivity, specificity, positive and negative predictive values) for CS reconstructions was 96.5% (97.5%, 95.6%, 90.9%, 98.1) and 93.1% (98.8%, 90.4%, 82.3%, 99.1%) for standard images. Conclusions: A modified three-material decomposition CS algorithm provides increased vascular CNR, equivalent qualitative image quality, and greater diagnostic accuracy for the detection of significant arterial stenosis of the lower extremity runoff on DE-CTA compared with standard image reconstruction. Key Points: • Calcified plaques may lead to overestimation of stenosis severity and false positive results, requiring additional invasive digital subtraction angiography (DSA). • A modified three-material decomposition algorithm for calcium subtraction provides greater diagnostic accuracy for the detection of significant arterial stenosis of the lower extremity runoff compared with standard image reconstruction. • The application of this algorithm in patients with heavily calcified vessels may be helpful to potentially reduce inconclusive CT angiography examinations and the need for subsequent invasive DSA.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma