Chemometric Approach to a Rapid Attenuated Total Reflection Fourier Transform Infrared Analysis of Complex Heroin-Based Mixtures

01 Pubblicazione su rivista
Stevanović Nataša Radosavljević, Jovanović Milena, Marini Federico, Ražić Slavica
ISSN: 0003-7028

Heroin is one of the most frequently seized drugs in Southeastern Europe. Due to the position in the Balkan route, the Republic of Serbia keeps important role in suppression of the trafficking of heroin for domestic and foreign illegal market. This research is aimed to provide a good scientific approach in the field of seized heroin analysis. Two different forms of heroin are present in the illegal market, mostly in mixtures with typical "cutting" agents: caffeine, paracetamol, and sugars. It was observed that the quantity of pure heroin in seized samples slightly increases from year to year. The aim of this study was to produce a reliable and fast procedure for classification of illicit heroin samples and determination of the concentration range of heroin in the samples. For that purpose, the attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) technique was used and combined with such chemometric methods as principal component analysis, cluster analysis, and partial least squares. Principal component analysis (PCA) as an unsupervised model was used for exploratory purposes to identify trends, similarities, and differences between samples by reducing the dimensionality of the data. The cluster classification of examined samples turned out to be extremely useful to evaluate the possibilities of the ATR FT-IR technique to classify the samples appropriately into the patterns, the constituted clusters. Additionally, partial least square was the suitable method for the purpose of determination of the heroin hydrochloride concentration range in examined samples. It is proved that the joined application of spectroscopy and chemometrics can be extremely convenient and useful for forensic and drugs control laboratories.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma