A Topic Recommender for Journalists
The way in which people acquire information on events and form their own
opinion on them has changed dramatically with the advent of social media. For many
readers, the news gathered from online sources become an opportunity to share points
of view and information within micro-blogging platforms such as Twitter, mainly
aimed at satisfying their communication needs. Furthermore, the need to deepen the
aspects related to news stimulates a demand for additional information which is often
met through online encyclopedias, such as Wikipedia. This behaviour has also
influenced the way in which journalists write their articles, requiring a careful assessment
of what actually interests the readers. The goal of this paper is to present
a recommender system, What to Write and Why, capable of suggesting to a journalist,
for a given event, the aspects still uncovered in news articles on which the
readers focus their interest. The basic idea is to characterize an event according to
the echo it receives in online news sources and associate it with the corresponding
readers’ communicative and informative patterns, detected through the analysis of
Twitter and Wikipedia, respectively. Our methodology temporally aligns the results
of this analysis and recommends the concepts that emerge as topics of interest from
Twitter and Wikipedia, either not covered or poorly covered in the published news
articles.