Micol Amar

Pubblicazioni

Titolo Pubblicato in Anno
Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS 2019
Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B. 2018
Error estimate for a homogenization problem involving the Laplace-Beltrami operator MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS 2018
Homogenization in heterogeneous media modeled by the Laplace-Beltrami operator Book of abstracts of SIMAI 2018 2018
Derivation of macroscopic equilibrium models for heat conduction in finely mixed composite media with singular sources Book of abstracts of SIMAI 2018 2018
Existence and uniqueness for some two-scale systems involving tangential operators Book of abstracts of SIMAI 2018 2018
Time-periodic unfolding operator in parabolic homogenization ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI 2017
Homogenization of an alternating Robin–Neumann boundary condition via time-periodic unfolding NONLINEAR ANALYSIS 2017
Homogenization of a heat conduction problem involving tangential operators International Conference on Elliptic and Parabolic Problems 2017
Exponential decay for a nonlinear model for electrical conduction in biological tissues NONLINEAR ANALYSIS 2016
Asymptotic decay under nonlinear and noncoercive dissipative effects for electrical conduction in biological tissues NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS 2016
Homogenization of a parabolic problem with alternating boundary conditions. 2016
Alternating Robin-Neumann boundary value problem as a model for transport through biological membranes 2016
Nonlinear modeling of electrical conduction in biological tissues 2016

ERC

  • PE1_11

Interessi di ricerca

  • G-convergenza, $\Gamma$-convergenza ed omogeneizzazione per equazioni e funzionali integrali in spazi di Sobolev, in BV ed in spazi di misure; convergenza 2-scale, tecniche di unfolding; studio del comportamento dei cosiddetti boundary layers nell'approssimazione asintotica. Applicazione delle tecniche di omogeneizzazione in problemi di biomatematica e scienza dei materiali.
  • Equazioni differenziali ellittiche e paraboliche: problemi di esistenza e unicità e proprietà qualitative delle soluzioni; sviluppi asintotici e ricostruzione di domini per problemi ellittici con dati al bordo di tipo misto Dirichlet-Neumann.
  • Semicontinuità, rilassamento e problemi di rappresentazione integrale in spazi di Sobolev ed in BV.
  • Problemi di minimizzazione per funzionali non convessi.
  • Tecniche variazionali in problemi di concentrazione.

Keywords

calculus of variations
Homogenization
Gamma-convergence
relaxation
Integral representation
lower semicontinuity
functions of bounded variation
PARTIAL DIFFERENTIAL EQUATIONS
Existence and uniqueness
asymptotic behavior

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma