The role of physical exercise and omega-3 fatty acids in depressive illness in the elderly
BACKGROUND:
BACKGROUND:
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons.
Old age is a risk factor for Alzheimer’s disease (AD), which is characterized by hippocampal impairment together with substantial changes in glial cell functions. Are these alterations due to the disease progression or are they a consequence of aging? To start addressing this issue, we studied the expression of specific astrocytic and microglial structural and functional proteins in a validated transgenic model of AD (3×Tg-AD).
Among the diverse cell types included in the general population named glia, astrocytes emerge as being the focus of a growing body of research aimed at characterizing their heterogeneous and complex functions. Alterations of both their morphology and activities have been linked to a variety of neurological diseases. One crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules.
Accumulation of oxidative insults on molecular and supramolecular levels could compromise renewal potency and architecture in the aging skin.
The oldest-old, in the ninth and tenth decades of their life, represent a population characterized by neuromuscular impairment, which often implies a loss of mobility and independence. As recently documented by us and others, muscle atrophy and weakness are accompanied by an unexpected preservation of the size and contractile function of skeletal muscle fibers. This suggests that, while most fibers are likely lost with their respective motoneurons, the surviving fibers are well preserved.
Introduction: Observational multimodal neuroimaging studies indicate sex differences in Alzheimer's disease pathophysiological markers. Methods: Positron emission tomography brain amyloid load, neurodegeneration (hippocampus and basal forebrain volumes adjusted to total intracranial volume, cortical thickness, and 2-deoxy-2-[fluorine-18]fluoro-D-glucose–positron emission tomography metabolism), and brain resting-state functional connectivity were analyzed in 318 cognitively intact older adults from the INSIGHT-preAD cohort (female n = 201, male n = 117).
Previous evidence showed abnormal posterior sources of resting-state delta (
rhythms in patients with Alzheimer’s disease with dementia (ADD), Parkinson’s disease with dementia
(PDD), and Lewy body dementia (DLB), as cortical neural synchronization markers in quiet wakefulness.
Here, we tested the hypothesis of additional abnormalities in functional cortical connectivity computed
in those sources, in ADD, considered as a “disconnection cortical syndrome”, in comparison with PDD
Previous evidence has shown different resting-state eyes-closed electroencephalographic delta (
We hypothesized that dopamine neuromodulation might affect cortical excitability in Parkinson's disease (PD) patients set in quiet wakefulness, as revealed by resting state eyes-closed electroencephalographic (rsEEG) rhythms at alpha frequencies (8–12 Hz). Clinical and rsEEG rhythms in PD with dementia (N = 35), PD with mild cognitive impairment (N = 50), PD with normal cognition (N = 35), and normal (N = 50) older adults were available from an international archive. Cortical rsEEG sources were estimated by exact low-resolution brain electromagnetic tomography.
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma