LHC

Measurement of the t(t)over-barZ and t(t)over-barW cross sections in proton-proton collisions at root s=13 TeV with the ATLAS detector

A measurement of the associated production of a top-quark pair (t (t) over bar) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1 fb(-1) of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement.

Measurement of W +/- Z production cross sections and gauge boson polarisation in pp collisions at root s=13 TeV with the ATLAS detector

This paper presents measurements of W +/- Z production cross sections in pp collisions at a centre-of-mass energy of 13TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1fb-1. The W +/- Z candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons.

Measurements of inclusive and differential fiducial cross-sections of t(t)over-bar production with additional heavy-flavour jets in proton-proton collisions at root s=13 TeV with the ATLAS detector

This paper presents measurements of tt (t) over bar production in association with additional b-jets in pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets tt (t) over bar decay channels.

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at root s = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single Z boson production, Higgs boson production, and Z boson pair production, and non-negligible interference effects at high invariant masses.

Measurements of inclusive and differential fiducial cross-sections of t(t)over-bar gamma production in leptonic final states at root s=13 TeV in ATLAS

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1fb-1, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one b-jet are selected.

Search for pair production of Higgs bosons in the b(b)over-barb(b)over-bar final state using proton-proton collisions at root s=13 TeV with the ATLAS detector

A search for Higgs boson pair production in the bbbb final state is carried out with up to 36.1 fb(-1) of LHC proton-proton collision data collected at s=13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets.

Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector

We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeVand O(100) GeVmissing transverse momentum. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation.

Measurement of the cross-section and charge asymmetry of W bosons produced in proton–proton collisions at √s=8TeV with the ATLAS detector

This paper presents measurements of the W+→ μ+ν and W-→ μ-ν cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton–proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2fb-1. The precision of the cross-section measurements varies between 0.8 and 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity.

Search for Higgs boson decays into a pair of light bosons in the bb mu mu final state in pp collision at root s=13 TeV with the ATLAS detector

A search for decays of the Higgs boson into a pair of new spin-zero particles, H -> aa, where the a-bosons decay into a b-quark pair and a muon pair, is presented. The search uses 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% confidence level are placed on the branching ratio (sigma(H)/sigma(SM)) x B(H -> aa -> bb mu mu), ranging from 1.2 x 10(-4) to 8.4 x 10(-4) in the a-boson mass range of 20-60 GeV.

Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC

The performance of identification algorithms (taggers) for hadronically decaying top quarks and W bosons in pp collisions at = 13TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma