Analysis of Conjugate Heat Transfer in Rocket Cooling Channels Using Modeled and Direct Numerical Simulation of Turbulence

Anno
2021
Proponente Sergio Pirozzoli - Professore Ordinario
Sottosettore ERC del proponente del progetto
PE8_5
Componenti gruppo di ricerca
Componente Categoria
Renato Paciorri Componenti strutturati del gruppo di ricerca
Alessandro Ceci Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Alessia Assonitis Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Francesco Nasuti Componenti strutturati del gruppo di ricerca
Fulvio Stella Componenti strutturati del gruppo di ricerca
Matteo Fiore Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Abstract

We propose to carry out a synergistic computational study of conjugate heat transfer in rectangular cooling channels typical of liquid propellant rocket engines, with the goal of establishing the predictive capability of Reynolds averaged Navier-Stokes (RANS) solvers. A classical Spalart-Allmaras RANS solver will be used as a first attempt, which will be iteratively coupled with a Fourier solver to account for thermal conduction within the duct walls. Comparison will made with reference solutions of the same problem obtained with direct numerical simulation (DNS) , which allows to describe the full features of flow and heat evolution in the channel. Numerical simulations will be carried out for different values of the fluid-solid thermal conductivity ratio to bring out conjugate heat transfer effects. Finite conductivity of the solid implies reduced thermal efficiency of the overall system as a result of both increased thermal resistance, and asymmetric heat loading on the fluid. Preliminary simulations carried out with the Spalart-Allmaras model have shown that despite the absence of the secondary motions, the RANS/Fourier solver can accurately estimate the pressure drop. Differences in the prediction of thermal effects are generally larger, amounting to underestimation of the overall heat transfer coefficient by about 10%. Additional turbulence models based on nonlinear constitutive relationships will be considered in the present project which are capable of correctly accounting for secondary motions, and modifications will be pursued to achieve accurate prediction of heat exchanges. Improvement of RANS model predictive capabilities would provide large competitive advantage to the national and European launch vehicle industry.

ERC
PE8_5, PE8_1, PE8_4
Keywords:
TURBOLENZA, PROPULSIONE AEROSPAZIALE, SIMULAZIONE NUMERICA, CALCOLO PARALLELO E DISTRIBUITO, SCAMBIO TERMICO E DI MASSA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma