Infrared-Resonant Raman as an innovative tool to characterize of defects in graphene

Anno
2020
Proponente Leonetta Baldassarre - Professore Associato
Sottosettore ERC del proponente del progetto
PE3_4
Componenti gruppo di ricerca
Componente Categoria
Francesco Mauri Componenti strutturati del gruppo di ricerca
Guglielmo Marchese Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Componente Qualifica Struttura Categoria
Francesco Mattioli Ricercatore CNR-IFN Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Alessandro Gaggero Ricercatore CNR-IFN Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Riccardo Mazzarello Professore RWTH Aachen University Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Abstract

We propose a novel experimental approach to address the role of defects on the electronic and transport properties in graphene. To this aim we will use resonant Raman spectroscopy with excitation in the infrared and compare experimental data to ab-initio theoretical calculations. Raman scattering is a spectroscopic technique based on inelastic scattering of light, and provides information on vibrational and other low-frequency modes in a physical system. Resonant Raman spectroscopy, involving electronic transitions between real states in the scattering process, yields information also on electron-phonon (e-ph) and electron-electron (e-e) interaction processes. Noteworthy, while non-resonant Raman cross sections are proportional to the fourth power of the excitation laser energy, in a resonant process the scattering intensity can be greatly enhanced independently on the exciting wavelength. In this context, the introduction of infrared (IR) lasers instead of visible ones will allow the study of the interplay between defects, electronic and thermal transport in graphene with an unprecedented accuracy. Indeed, Raman spectra obtained with excitation laser wavelength of 1 micron and longer may yield a different peak lineshape. These vibrational modes, in particular their relative intensity and lineshape, can now be modelled starting from first-principle atomistic calculations based on the density functional theory (DFT) providing an extremely carefull test for the most advanced electron-phonon scattering theories. We will artificially induced low density of defects in graphene with electron-beam and follow the modification of the Raman spectra, comparing it to theoretical calculations.

ERC
PE3_2, PE4_2
Keywords:
PROPRIETA¿ DI TRASPORTO DELLA MATERIA CONDENSATA, TECNICHE SPETTROSCOPICHE E SPETTROMETRICHE, GRAFENE

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma