Salta al contenuto principale
Ricerc@Sapienza
Toggle navigation
Home
Login
Home
Persone
luca.fanelli@uniroma1.it
Luca Fanelli
Professore Associato
Struttura:
DIPARTIMENTO DI MATEMATICA
E-mail:
luca.fanelli@uniroma1.it
Pagina istituzionale corsi di laurea
Curriculum Sapienza
Pubblicazioni
Titolo
Pubblicato in
Anno
Localization of eigenvalues for non-self-adjoint Dirac and Klein–Gordon operators
NONLINEAR ANALYSIS
2022
Eigenvalue bounds for non-selfadjoint Dirac operators
MATHEMATISCHE ANNALEN
2021
Review on the Stability of the Peregrine and Related Breathers
FRONTIERS IN PHYSICS
2020
On the improvement of the Hardy inequality due to singular magnetic fields
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
2020
Weak dispersive estimates for fractional Aharonov-Bohm-Schrodinger groups
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS
2019
Uniqueness results for Zakharov-Kuznetsov equation
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
2019
The Akhmediev breather is unstable
SÃO PAULO JOURNAL OF MATHEMATICAL SCIENCES
2019
Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators
LETTERS IN MATHEMATICAL PHYSICS
2019
Frequency-dependent time decay of Schrödinger flows
JOURNAL OF SPECTRAL THEORY
2018
Spectral stability of Schrödinger operators with subordinated complex potentials
JOURNAL OF SPECTRAL THEORY
2018
Absence of eigenvalues of two-dimensional magnetic Schrödinger operators
JOURNAL OF FUNCTIONAL ANALYSIS
2018
Dispersive estimates for the Dirac equation in an Aharonov-Bohm field
JOURNAL OF DIFFERENTIAL EQUATIONS
2017
Gaussian decay of harmonic oscillators and related models
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
2017
Spherical Schrödinger hamiltonians: spectral analysis and time decay
Advances in Quantum Mechanics
2017
Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows
JOURNAL OF FUNCTIONAL ANALYSIS
2015
Resolvent and Strichartz estimates for elastic wave equations
APPLIED MATHEMATICS LETTERS
2015
Sharp Hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
2015
Time Decay of Scaling Invariant Electromagnetic Schrödinger Equations on the Plane
COMMUNICATIONS IN MATHEMATICAL PHYSICS
2015
Progetti di Ricerca
Nuovi challenge in EDP: Analisi di Fourier, Teoria Spettrale e Calcolo delle Variazioni
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma