Salta al contenuto principale
Ricerc@Sapienza
Toggle navigation
Home
Login
Home
Persone
virginia.decicco@uniroma1.it
Virginia De Cicco
Professore Associato
Struttura:
DIPARTIMENTO DI SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
E-mail:
virginia.decicco@uniroma1.it
Pagina istituzionale corsi di laurea
Curriculum Sapienza
Pubblicazioni
Titolo
Pubblicato in
Anno
Relaxation and optimal finiteness domain for degenerate quadratic functionals - one dimensional case
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS
2024
Lower semicontinuity in GSBD for nonautonomous surface integrals
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS
2023
Representation formulas for pairings between divergence-measure fields and BV functions
JOURNAL OF FUNCTIONAL ANALYSIS
2023
Pairings between bounded divergence-measure vector fields and BV functions
ADVANCES IN CALCULUS OF VARIATIONS
2020
An extension of the pairing theory between divergence-measure fields and BV functions
JOURNAL OF FUNCTIONAL ANALYSIS
2019
Anzellotti's pairing theory and the Gauss–Green theorem
ADVANCES IN MATHEMATICS
2019
The Dirichlet problem for singular elliptic equations with general nonlinearities
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
2019
Elliptic problems involving the 1-Laplacian and a singular lower order term
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY
2018
On the chain rule formulas for divergences and applications to conservation laws
NONLINEAR ANALYSIS
2017
Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
2016
A new nonautonomous chain rule in BV
ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI
2016
Nonautonomous chain rules in BV with Lipschitz dependence
MILAN JOURNAL OF MATHEMATICS
2016
Lower semicontinuity for non autonomous surface integrals
ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI
2015
Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
2015
ERC
PE1_8
PE1_11
Keywords
elliptic equations
calculus of variations
Progetti di Ricerca
Problemi variazionali singolari e degeneri
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma