Biochemistry

Functional imaging in the follow-up of enteropancreatic neuroendocrine tumors: Clinical usefulness and indications

CONTEXT:
Functional imaging tests (FITs) detecting somatostatin receptor expression [i.e., somatostatin receptor scintigraphy, 68Ga-DOTA positron emission tomography/computed tomography (CT)] have a pivotal role in the diagnosis of neuroendocrine tumors (NETs), although their indication during follow-up still needs to be clarified.
OBJECTIVE:
Investigate the role of FITs after diagnosis of metastatic enteropancreatic NETs, identifying patients who might benefit from these exams.
DESIGN:

Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae). A HPTLC fingerprinting approach

Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies.

Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy

Four pyrrolizidine alkaloids, namely 7-O-angeloyllycopsamine N-oxide 1, echimidine N-oxide 2, echimidine 3 and 7-O-angeloylretronecine 4, were isolated for the first time from the whole plant ethanolic extract of Echium confusum Coincy, through bioassay-guided approach. Their structures were determined by spectroscopic means. All the isolates compounds showed moderate activities in inhibiting AChE, with IC50 0.276–0.769.

Tramesan, a novel polysaccharide from trametes versicolor. structural characterization and biological effects

Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom "yun zhi", Trametes versicolor, traditionally used for (cit.) "replenish essence and qi (vital energy)".

Seagrasses as sources of mosquito Nano-Larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in Dengue and Zika Virus vector Aedes aegypti

Mosquitoes (Diptera: Culicidae) act as vectors for devastating pathogens and parasites. Zika virus, an Aedes mosquito-borne flavivirus, is becoming a worldwide public health concern following its suspected association with over 4000 recent cases of microcephaly in the infants of some women who were pregnant when they contracted the disease. There are no specific treatments for Zika virus, thus the eco-friendly and effective control of mosquito vectors is crucial.

Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells. Impact on predation of non-target tadpoles, odonate nymphs and mosquito fishes

Recently, it has been highlighted an overlooked connection between the biting activity of Anopheles mosquitoes and the spread of cancer. The excellent physico-chemical properties of graphene quantum dots (GQDs) make them a suitable candidate for biomedical applications. We focused on the toxicity of GQDs against Plasmodium falciparum and its vector Anopheles stephensi, and their impact on predation of non-target mosquito predators. Biophysical methods, including UV–vis, photoluminescence, FTIR and Raman spectroscopy, XRD analysis and TEM, confirmed the effective GQD nanosynthesis.

Mangrove helps. Sonneratia alba-synthesized silver nanoparticles magnify guppy fish predation against Aedes aegypti young instars and down-regulate the expression of envelope (E) gene in dengue virus (serotype DEN-2)

The control of dengue vectors with effective tools is crucial. Here, we fabricated silver nanoparticles (AgNP) using a cheap method relying to a mangrove extract (Sonneratia alba) as a reducing and stabilizing agent. AgNP were characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. LC50of S. alba extract against Aedes aegypti ranged from 192.03 ppm (larva I) to 353.36 ppm (pupa). LC50of AgNP ranged from 3.15 (I) to 13.61 ppm (pupa).

Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential

Nowadays, the interactions of metal nanoparticles with microorganisms and parasites of public health importance receive increasing attention due to their functional versatility and multipurpose effectiveness. In this research, green biosynthesis of antiviral silver nanomaterials was achieved allowing the reduction of Ag+ions by the aqueous leaf extract of mangrove Rhizophora lamarckii.

Aegiceras corniculatum-mediated green synthesis of silver nanoparticles. Biophysical characterization and cytotoxicity on vero cells

Nowadays, silver nanoparticles receive increasing attention in nanomedicine, due to their characteristics which allow numerous biological applications. In this study, a biofabrication protocol was formulated to synthesize silver nanoparticles using a mangrove extract of Aegiceras corniculatum. The bio-physical characterization of mangrove-fabricated silver nanoparticles were carried out using UV–vis spectrophotometry, FTIR spectroscopy, XRD analysis and HRTEM.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma