Computer Science Applications1707 Computer Vision and Pattern Recognition

Leveraging CPTs in a Bayesian Approach to Grade Open Ended Answers

Here we discuss a framework (OpenAnswer) providing support to the teacher's activity of grading answers to open ended questions. OpenAnswer implements a teacher mediated peer-evaluation approach: the marking results obtained from peer assessments are tuned by the grades explicitly assigned by the teacher, the teacher grades only a subset of the answers, suggested by the system. When a termination criterion is met, for the process managing the amount of teacher grading work, the remaining answers are automatically graded.

Measuring Docker performance: what a mess!!!

Today, a new technology is going to change the way platforms for the internet of services are designed and managed. This technology is called container (e.g. Docker and LXC). The internet of service industry is adopting the container technology both for internal usage and as commercial offering. The use of container as base technology for largescale systems opens many challenges in the area of resource management at run-Time, for example: Autoscaling, optimal deployment and monitoring.

Optical modelling and analysis of the Q and U bolometric interferometer for cosmology

Remnant radiation from the early universe, known as the Cosmic Microwave Background (CMB), has been redshifted and cooled, and today has a blackbody spectrum peaking at millimetre wavelengths. The QUBIC (Q&U Bolometric Interferometer for Cosmology) instrument is designed to map the very faint polaristion structure in the CMB. QUBIC is based on the novel concept of bolometric interferometry in conjunction with synthetic imaging. It will have a large array of input feedhorns, which creates a large number of interferometric baselines.

Simulations and performance of the QUBIC optical beam combiner

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer.

QUBIC: The Q and U bolometric interferometer for cosmology

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer.

Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment

QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of bolometric detectors with the control of systematic effects typical of interferometers.

Thermal architecture for the QUBIC cryogenic receiver

QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has been designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel4He sorption cooler and a double-stage3He/4He sorption cooler.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma