Novel measurements setup for attacks exploiting static power using DC pico-ammeter
The static power consumption in modern integrated circuits has become a critical standpoint in side-channel analysis. As it has been widely demonstrated in the technical literature, it is possible to extract secret information from a cryptographic circuit by means of static current measurements. Static and dynamic power analysis require different measurement procedures, due to physical reasons. In this work, we present a novel measurement setup, which aims to overcome several issues in measuring static currents, such as extremely low SNR and temperature dependency, providing a low-cost solution to carry out Attacks Exploiting Static Power (AESP). The proposed measurement setup is based on a DC pico-ammeter, which allows to acquire DC currents after a long integration time, and on a thermal feedback loop exploiting a commercial Peltier cell to set and control the working temperature of the cryptographic processor. To verify the effectiveness of the proposed setup, AESP have been successfully implemented on a 4?4 bit crypto-core, extracted from a bit slice implementation of the PRESENT-80 algorithm and implemented on a 45nm Xilinx Spartan-6 FPGA.